Содержание

Контроллеры для солнечных батарей

Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда аккумулятора солнечной батареи.

Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.

Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений). Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя.

Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.

Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.

Контроллер заряда АКБ MPPT
В зависимости от мощности контроллера заряда аккумуляторных батарей солнечной энергетической установки, конструкции этих устройств могут иметь самую разную конфигурацию

В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.

Настройка схемы

Перед началом настройки временно разорвите цепь выхода компаратора U1-2.

Вместо термистора подключите сопротивление 8.2 кОм, примерно равное сопротивлению 10-килоомного термистора при температуре 25 градусов Цельсия. Если вы не планируете использовать термокомпенсацию точки максимальной мощности, или расстояние от панели до контроллера больше 2 метров, резисторы R15, R17 и термистор R16 могут быть удалены без ущерба для работоспособности схемы. При этом резистор R4 подключается к плюсовой шине.

Операции настойки выполняются в следующей последовательности:

  1. Подключите к выходу контроллера заряженную примерно на 50-60% аккумуляторную батарею небольшой мощности, например 7 А·ч от источника бесперебойного питания. Как правило, такие аккумуляторы есть в арсенале мастера.
  2. Проверьте наличие опорного напряжения 8 В.
     
  3. Подключите к входу контроллера регулируемый источник 10-24 В с током до 2 А через сопротивление 5 Ом, имитируя подключение солнечной батареи.
  4. Медленно поднимая напряжение, контролируйте состояние выхода компаратора U1-1. Если при напряжении, равном номинальному напряжению панели, например 17.2 В, с которой будет использоваться контроллер, на выходе U1-1 все еще будет высокий потенциал, регулируем R5 до возникновения автоколебаний.
     
  5. Далее контролируя напряжение на конденсаторе С1 и увеличивая входное напряжение, убеждаемся, что напряжение на конденсаторе С1 остается неизменным и равным номинальному напряжению солнечной панели. При помощи осциллографа убедитесь, что форма сигнала на стоке Q3 близка к показанной на Рисунке 3.
     
  6. Напряжение на аккумуляторе начнет расти. Когда оно достигнет 14.5 В, прекратите настройку, отключите аккумулятор и источник питания. Восстановите соединение выхода компаратора U1-2 с элементами схемы.
     
  7. Подключите аккумулятор и источник питания. Если форма импульсов изменилась, и ток заряда резко упал, регулируйте R10 до тех пор, пока изменение ограничения зарядного тока не будет наступать при напряжении на заряжаемом аккумуляторе 14.4 В.
Форма сигнала на стоке MOSFET Q3.
Рисунок 3. Форма сигнала на стоке MOSFET Q3.

На этом настройка может считаться законченной.

Вступление

Несмотря на привлекательность идеи солнечной энергетики, ее реальное внедрение в энергоснабжение сельских и дачных домов условно рентабельно только на широтах Краснодарского края и южнее. Тем не менее, энтузиасты приобретают солнечные панели с максимальной мощностью от 40 до 100 ватт и пробуют использовать системы на их основе в качестве резервного источника питания для аварийного освещения и компьютерной техники. Как правило, эти люди обладают руками, растущими из правильного места, и знают практическую электронику. Им и адресуется эта статья.

Самостоятельное изготовление

Если у человека имеются определенные познания в области электроники и электротехники, то можно попробовать собрать схему контроллера для солнечных панелей и ветрогенератора своими руками. Такой агрегат будет сильно уступать в функционале и эффективности промышленным серийным образцам, но в маломощных сетях его может быть вполне достаточно.

Кустарный регулирующий модуль должен отвечать основным условиям:

  • 1,2P ≤ I × U. В этом уравнении используются обозначения суммарной мощности всех источников (Р), выходного тока контроллера (I), напряжения в системе при полностью разряженных АКБ (U),
  • Максимальное входное напряжение контроллера должно отвечать суммарному напряжению батарей без нагрузки.

Наиболее простая схема подобного модуля будет иметь следующий вид:

Устройство, собранное своими руками, работает с такими характеристики:

  • Зарядное напряжение – 13,8 В (может меняться в зависимости от номинала тока),
  • Напряжение отключения – 11 В (настраивается),
  • Напряжение включения – 12,5 В,
  • Падение напряжения на ключах – 20 мВ при значении тока 0,5А.

Контроллеры заряда ШИМ или МРРТ типа являются одной из неотъемлемых частей любой гелиосистемы или гибридной системы на солнечных и ветрогенераторах. Они обеспечивают нормальный режим заряда аккумуляторных батарей, повышают эффективность и предотвращают их преждевременный износ, к тому же могут быть вполне собраны своими руками.

Функции контроллеров

Аккумуляторы — капризны, при неправильной эксплуатации они теряют свою емкость или вовсе перестают работать. Это происходит по двум причинам:

  • перезаряд
  • недозаряд

Первая причина обусловлена тем, что напряжение заряда больше номинального напряжения аккумулятора. Если не отсоединить устройство в тот момент, когда оно зарядилось до номинального значения — происходит вскипание жидкости в его ячейках с дальнейшим испарением жидкого электролита. А это служит причиной потери емкости. Ячейки с электролитом могут утратить герметичность, вследствии высокого давления, образующегося при кипении жидкости. В таком случае девайс теряет свойство накапливать энергию.

Вторая причина заключается в том, что аккумуляторы не любят, когда их заряжают не полностью. И через несколько циклов заряда разряда могут потерять первоначальную емкость. В большинстве случаев это обратимый процесс, все зависит от изношенности батареи. Утрата емкости обусловлена так называемым «эффектом памяти». Особенно это явление актуально у свинцовых накопителей. Существуют экземпляры с электродами из других материалов, которым этот эффект практически не присущ. Но стоят они дороже. Свинцовые накопители хороши тем, что могут давать большие пиковые токи, что хорошо при питании двигателей и потребителей индуктивного и емкостного характера.

На практике аккумуляторы подключают к панелям последовательно с контроллером заряда. Это приспособление помогает функционировать батареям в оптимальном режиме независимо от всего и оберегает их от преждевременного износа. Эти модули следят за состоянием батареи и в зависимости от этого подают на клеммы определенные значения напряжения и тока. При дневном освещении модуль фотоэлементов генерирует определенную мощность. Ее значение указывают в инструкции, но следует помнить, что она была снята в режиме холостого хода. При подсоединении аккумулятора они уменьшатся, так как он имеет некоторое внутреннее сопротивление. Рекомендовано производить заряд током в 10 раз меньшим, чем мощность батареи. На практике этого сложно добиться так как сопротивление аккумулятора меняется при заряде. В разряженном состоянии оно наибольшее, в заряженном — наименьшее. Поэтому правильно регулировать зарядный ток динамически.

Применяемые на практике виды

На промышленном уровне налажен и осуществляется выпуск двух видов электронных устройств, исполнение которых подходит для установки в схему солнечной энергетической системы:

  1. Устройства серии PWM.
  2. Устройства серии MPPT.

Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и  ветряной энергетики.

Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.

Контроллер для солнечных батарей
Одна из популярных в обществе моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей

Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность.

Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.

Контроллер типа MPPT:

  • имеет более высокую стоимость;
  • обладает сложным алгоритмом настройки;
  • даёт выигрыш по мощности только на панелях значительной площади.

Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.

mppt контроллер для солнечных батарей
Контроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных

Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).

Аннотация

Вниманию читателей предлагается контроллер заряда фотоэлектрических систем при токе заряда до 8 А и напряжении аккумуляторов 12 В. Контроллер оптимизирует процесс заряда, не допуская перезаряда аккумуляторов в широком диапазоне освещенности и температуры панели. Контроллер содержит доступные компоненты общей стоимостью менее 3 долларов (менее 200 рублей). Несколько устройств в течение 6 месяцев эксплуатируются с панелями, имеющими максимальную мощность от 40 до 100 ватт

Как подключить контроллер заряда для солнечных батарей?

Этот прибор может находится внутри инвертора, а также может быть, как отдельным инструментом.

Задумываясь о подключении следует учитывать характеристики всех составляющих электростанции. К примеру, U не должно быть выше того с которым может работать контроллер.

Установку нужно выполнять в то место где не будет влаги. Дальше приведем варианты подключения двух распространенных типов контроллеров для солнечной батареи.

Подключение МРРТ

Это достаточно мощное устройство и подключается определенным образом. На концах проводов с помощью которых он подсоединяется имеются медные наконечники с зажимами. Минусовые клеймы прицепляемые к контроллеру нужно снабдить переходниками предохранителями и выключателями. Подобное решение не даст потерять энергию и сделает солнечную электростанцию более безопасней. Напряжение на солнечных панелях должно соответствовать напряжению контроллера.

Подключение

Перед тем как включить устройство mppt в цепь переключите выключатели на контактах в положение «Выкл» и вытащите предохранители. Все это делается по такому алгоритму:

  1. Выполнить сцепление клеймов АКБ и контроллера.
  2. Прицепить солнечные панели к контроллеру.
  3. Обеспечить заземление.
  4. Поставить на контролирующий прибор датчик отслеживающий уровень температуры.

Выполняя данную процедуру следить за правильностью полярности контактов. Когда все будет выполнено переведите выключатель в положение «ВКЛ» и вставьте предохранители. Правильность работы будет заметна если на табло контроллера высветится информация о заряде.

Подключение солнечной батареи к контроллеру PWM

Чтобы это сделать выполните простой алгоритм соединения:

  1. Кабеля АКБ сцепите с клеймами контроллера pwm.
  2. У провода с полярностью «+» нужно включить предохранитель для защиты.
  3. Соедините провода от СБ контроллером заряда солнечной батареи.
  4. Присоедините лампочку на 12 вольт к выводам нагрузки контроллера.

Подключение PWM

В момент подключения соблюдайте маркировку. В противном случае приборы могут поломаться. Не следует соединять инвертор с контактами контролирующего устройства. Он должен цепляться к контактам АКБ.

Описание схемы устройства

Известно, что для эффективного отбора мощности контроллер должен отслеживать точку максимальной мощности солнечной панели, то есть точку, в которой и напряжение и ток, отдаваемые панелью, максимальны. Универсальные промышленные контроллеры, отслеживающие положение рабочей точки и рассчитанные на широкий диапазон мощностей солнечных панелей, собранных в батареи, достаточно дороги и избыточны в случае эксплуатации одиночной панели.

Точка максимальной мощности и температурный диапазон эксплуатации указываются в паспортных данных качественных панелей.

При проектировании предлагаемого контроллера реализованы обе основных задачи эксплуатации – непрерывное поддержание батареи в точке максимальной мощности и температурная коррекция положения рабочей точки.

Блок-схема контроллера представлена на Рисунке 1 и содержит эквивалент солнечной батареи в виде источника тока SB, обладающего внутренним сопротивлением RВН.

При отсутствии внешнего освещения RВН стремится к бесконечности, а ток к нулю. При росте освещенности RВН стремится нулю, а ток к максимальному, технически допустимому значению.

Рассмотрим работу схемы. В исходном состоянии (при отсутствии освещения) конденсатор С1 разряжен, на выходе компаратора U1 присутствует «1», ключ S1 разомкнут. UOП равно паспортному значению точки максимальной мощности солнечной панели.

При росте освещенности конденсатор С1 начинает заряжаться через внутреннее сопротивление солнечной панели. Когда напряжение на С1 превышает опорное напряжение, на выходе компаратора появляется «0», замыкающий ключ S1.

Конденсатор С1 разряжается через S1 на нагрузку RН, после чего процесс повторяется.

Чем выше освещённость, тем чаще повторяется описанный выше процесс.

По сути, мы имеем релаксационный генератор – преобразователь освещенности в частоту.

В практической схеме частота следования импульсов тока составляет единицы герц на рассвете и в сумерки, до десятков килогерц при максимальной освещенности, что обеспечивает широкий динамический диапазон работоспособности контроллера.

Принципиальная схема контроллера представлена на Рисунке 2.

Поскольку ранее мы подробно разобрали алгоритм работы контроллера, то остановимся только на нескольких моментах.

  • Схема гарантированно работоспособна с 12-вольтовыми солнечными панелями мощностью от 40 Вт до 100 Вт, имеющими напряжение холостого хода не более 22 В, номинальное напряжение, соответствующее точке максимальной мощности 17-18 В, и номинальный ток 2…8 А.
     
  • Компаратор U1-2 срабатывает при напряжении на аккумуляторной батарее выше 14.4 вольт, принудительно ограничивая длительность импульсов зарядного тока, что предотвращает перезаряд аккумулятора.
     
  • Питание компаратора и источника опорного напряжения производится с выхода устройства, что гарантирует автоматическое отключение контроллера при отключении аккумулятора.

Простейшие контроллеры типа Откл/Вкл (или On/Off)

Аппараты данного вида относятся к самым простым и, как следствие, они считаются самыми дешевыми. При получении аккумулятором предельного заряда, специальное реле осуществляет разрыв цепи и ток от солнечной панели прекращает свое поступление. Фактически, во многих случаях батарея оказывается заряженной не до конца, что отрицательно сказывается на ее последующей работоспособности. В связи с этим, такие регуляторы нежелательно применять в качественных системах.

Контроллеры для солнечных батарей типа включения-отключения обладает крайне ограниченной функциональностью. Хотя он и предотвращает перегрев и перезарядку батареи, тем не менее, полного заряда не обеспечивает. Ток может достичь максимального значения и это вызовет отключение, однако сам заряд АКБ в этот момент составляет всего лишь 70-90%, то есть является неполным.

Подобное состояние также отрицательно сказывается на общей функциональности батареи и постепенно приводит к снижению эксплуатационного ресурса. В таких ситуациях для полноценной зарядки дополнительно требуется не менее 3-4 часов.

Чем можно заменить некоторые комплектующие

Любой из этих элементов можно заменять. При установке других схем нужно подумать об изменении емкости конденсатора С2 и подборе смещения транзистора Q3.

Вместо транзистора MOSFET можно установить любой другой. Элемент должен иметь низкое сопротивление открытого канала. Диод Шоттки лучше не заменять. Можно установить обычный диод, но его нужно правильно разместить.

Резисторы R8, R10 равны 92 кОм. Такое значение нестандартное. Из-за этого такие резисторы найти сложно. Их полноценной заменой может быть два резистора с 82 и 10 кОм. Их нужно включать последовательно.

Режим КТЦ АКБ

При старте программы включается заряд АБ с током Is. Через 1 сек АБ переключается на разряд с током Ii. Еще через 1 сек АБ снова переключается на заряд. Так продолжается до тех пор, пока напряжение не достигнет Umax – программа останавливается. Индикация КТЦ выкл. Если напряжение стало выше Umax на 0.2 – остановка программы, индикация ERROR. Если ток заряда или разряда превысил установленные на 0.2 – остановка программы, индикация ERROR.

Если истекло время заряда (параметр H) – остановка программы, индикация ERROR в верхней строке. В нижней строке надпись Time out.

Выбранный режим после отключения от сети не запоминается. При включении всегда режим зарядка.

Необходимость

При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства.  Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

Необходимость этого устройства можно свести к следующим пунктам:

  1. Зарядка аккумулятора многостадийная;
  2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
  3. Подключение аккумулятора при максимальном заряде;
  4. Подключение зарядки от фотоэлементов в автоматическом режиме.

Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.

Как осуществить подключение самостоятельно

Подключить контроллер заряда MPPT для солнечных батарей достаточно просто. Для этого следует понимать принципиальную схему подключения, уметь в ней разбираться и ориентироваться, а также соединить все провода и элементы с полным соблюдением полярности, то есть «плюс» соединить с «плюсом», а «минус» с «минусом».

На рисунке ниже можно увидеть специальные отверстия с «плюсом» и минусом», собственно следует правильно засунуть в них нужные провода.

Более подробная схема представлена ниже.

Схема подключения довольно-таки проста, важно соединить все элементы, соблюдая полярность, а также необходимо учесть, чтобы они безопасно располагались в доме и не угрожали жизни. Справиться с такой задачей сможет каждый

Возможно подключение нескольких аккумуляторов, однако здесь присоединять необходимо смешанным способом, а именно: группа аккумуляторных батарей подключается между собой параллельно, а к контроллеру последовательно. Подобную схему можно увидеть на рисунке ниже.

Как видно из схемы, количество аккумуляторов не ограничено. Однако, следует понимать, что при таком числе необходимо приобрести соответствующий инвертор, который будет способен справиться с такой большой нагрузкой.

Схема подключения модуля

Клик для увеличения схемы

После снятия задней стенки можно получить доступ к печатной плате устройства.

В качестве аккумулятора была выбрана батарея 12 В емкостью 1,2 А/ч, потому, что она у автора была. На самом деле в ясный солнечный день панель сможет зарядить 2-3 таких аккумулятора. Для уменьшения опасности короткого замыкания в цепь аккумулятора включен плавкий предохранитель. Для недопущения разряда аккумулятора через солнечную панель при малом освещении последовательно с панель включен диод Шотки типа IN5817. Когда аккумулятор полностью заряжен ток, отбираемый от солнечной батареи, составляет около 50 мА, при напряжении 19 В.

В качестве тестовой нагрузки использована самодельная светодиодная фитолампа на 4-х последовательно включенных фитосветодиода мощностью 1 Вт, последовательно со светодиодами включен резистор типа МЛТ-2, сопротивлением 30 Ом. При напряжении 12,6 В, ток потребляемый лампой составит около 60 мА. Таким образом аккумулятор на 1,2 А*ч позволяет питать эту лампу около 20 часов.

В целом собранная автономная конструкция оказалась вполне работоспособной с технической точки зрения. Но с экономической точки зрения, учитывая стоимость солнечной батареи, аккумулятора и блока управления картина получается безрадостной. Солнечная батарея стоит 2700 р, аккумулятор 12 В 1,2 А/ч стоит около 500 р, блок управления 400 р. Так же автор пробовал использовать два последовательно включенных аккумулятора 6 В 12 А/ч (они будут иметь стоимость около 3000 р), такой аккумулятор у автора заряжается за 3-4 солнечных дня, при этом ток зарядки доходит до 270 мА.

Общая стоимость использованного оборудования в минимальной комплектации 3600 р. Как несложно видеть, данная фитолампа потребляет около 0,8 Вт. При тарифе 3,5 р за 1 кВт/ч, лампа должна работать от сети при КПД источника питания 50%, около 640000 ч или 73 года только для того, что бы можно было оправдать затраты на оборудование. При этом за такой промежуток времени, несомненно, придется несколько раз полностью сменить оборудование, деградацию аккумулятора и фотоэлементов ни кто не отменял.

Для чего нужны контроллеры заряда аккумуляторов

Если аккумулятор подсоединить напрямую к клеммам солнечных батарей, то заряд его будет происходить непрерывно. В конечном итоге на уже полностью заряженный аккумулятор будет продолжать поступать ток, что вызовет повышение напряжения на несколько вольт. В результате происходит перезаряд АКБ, повышается температура электролита, причем эта температура достигает таких значений, что электролит закипает, происходит резкий выброс паров из банок аккумулятора. Как следствие, может произойти полное испарение электролита и высыхание банок. Естественно, это не добавляет «здоровья» аккумулятору и резко снижает ресурс его работоспособности.

Контроллер
Контроллер в системе солнечного заряда аккумуляторов

Вот, чтобы не допустить подобных явлений, чтобы оптимизировать процессы заряда/разряда, и нужны контроллеры.

Как работает контроллер зарядки аккумулятора?

В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

схема контроллера заряда аккумулятора от солнечной батареи

Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору. Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В. Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

Структурные схемы контроллеров

Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.

Вариант #1 – устройства PWM

Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и  разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.

Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).

Схема контроллера PWM
Так примерно выглядит структурная схема устройств, выполненных на базе PWM технологий. Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность

Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.

Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.

Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.

Вариант #2 – приборы MPPT

Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.

Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.

Схема MPPT контроллера
Схемное решение в структурном виде для контроллеров заряда, основанных на технологиях MPPT. Здесь уже отмечается более сложный алгоритм контроля и управления периферийными устройствами

Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.

Схемой таких устройств реализуются несколько методов контроля:

  • возмущения и наблюдения;
  • возрастающей проводимости;
  • токовой развёртки;
  • постоянного напряжения.

А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.

Виды приборов

Контроллеры для солнечных батарей представлены в нескольких видах:

  • Устройства On/Off.
  • PWM контроллеры.
  • MPPT контроллеры.
  • Устройства гибридного типа.
  • Самодельные контроллеры.

Познакомимся с каждым из этих видов. На сегодняшний день самыми популярными считаются PWM контроллер и контроллер MPPT.

Устройства On/Off

Такие контроллеры заряда аккумуляторов являются самыми простыми из всех моделей, которые представлены на современном рынке. Их функциональность весьма ограничена. Устройства этого типа отключают процесс зарядки аккумулятора при достижении максимального значения напряжения. Таким образом, предотвращается перегрев и перезарядка АКБ.

Важно подчеркнуть, что контроллер такого типа не сможет обеспечить 100% уровень заряда АКБ. Этот нюанс объясняется тем, что отключение происходит по достижении максимального значения тока. На момент обесточивания уровень заряда может находиться в пределах от 70 до 90%

Чтобы загрузить аккумуляторную батарею полностью, потребуется еще несколько часов. Неполная зарядка неблагоприятно сказывается на функционировании прибора и уменьшает срок его эксплуатации.

Контроллеры типа PWM

Контроллер уровня заряда PWM (Pulse-Width Modulation) по-другому называется ШИМ. ШИМ контроллер − устройство, принцип действия которого основан на широтно-импульсной модуляции тока. Прибор разработан с целью устранения проблемы неполной зарядки. 100% уровень достигается благодаря тому, что механизм при обнаружении максимального значения тока, понижает его продлевая таким образом зарядку аккумулятора.

Описанное устройство предотвращает перегрев аккумуляторной батареи, способствует повышению принятия заряда. В общем, хорошо сказывается на ее состоянии. Прибор этого типа считается весьма эффективным, но MPPT контроллер, если сравнивать его принцип действия с PWM, является более предпочтительным вариантом по ряду функциональных возможностей.

MPPT контроллеры

МРРТ контроллер (Maximum Power Point Tracking) − устройство, которое отслеживает максимальный предел мощности заряда. С помощью сложного алгоритма устройство этого типа следит за показаниями тока и напряжения системы энергоснабжения, определяя оптимальное соотношение параметров для обеспечения максимальной продуктивности всей солнечной электростанции.

Без преувеличения можно утверждать, что именно MPPT контроллер является наиболее усовершенствованной и эффективной моделью по сравнению с другими. Для сравнения: MPPT контроллер повышает продуктивность системы энергообеспечения до 35% относительно PWM.

На сегодняшний день MPPT контроллер считается более подходящим для систем, в которых солнечные панели занимают значительные площади. Но высокая стоимость приборов данного типа вводит определенные ограничения при его использовании. Поэтому PWM модель является доступной для эксплуатации в системах энергоснабжения частных домов.

Устройства гибридного типа

Используются в случае энергоснабжения с помощью комбинирования источников энергии, например, ветра и солнца. В основу разработки гибридного прибора положен принцип работы МРРТ и PWM контроллеров. Единственное, чем он отличается от других моделей, − это вольтамперные параметры.

Главная цель моделей гибридного типа состоит в своеобразном выравнивании нагрузки на аккумуляторы. Эта проблема возникает в результате работы ветрогенераторов, которые производят ток непостоянной величины. При этом аккумуляторы работают в усиленном режиме, который значительно уменьшает срок эксплуатации.

Самодельные приборы

В некоторых случаях, при наличии соответствующего опыта и навыков, собирают контроллер аккумуляторов для солнечной панели самостоятельно. Но, скорее всего, такой прибор будет значительно уступать в плане функциональности и эффективности. Устройства подобного типа подходят только для очень маленькой системы энергообеспечения, которая работает с низкой мощностью.

Для изготовления контроллера заряда аккумуляторов вам понадобится его схема. Погрешность работы самодельного контроллера должна позволять фиксировать перепады измеряемых величин с точностью до одной десятой.

Конструктивные особенности

При максимальном токе более 3 А для транзистора Q3 желателен радиатор. Разумеется, полевой транзистор сохранит работоспособность без заметного ухудшения характеристик при температурах до 100 градусов, но если вы хотите получить надежно работающий прибор, радиатор необходим.

В качестве дросселя L1 использован дроссель режекторного фильтра от блока питания компьютера. Обмотки дросселя соединены последовательно. При токах более 5 А дроссель может нагреваться до 60 градусов, но это не влияет на надежность устройства.

Способы подключения контроллеров

Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.

Так, например, если используется контроллер, рассчитанный на максимум  входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.

Схема баланса напряжений
Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели

Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

Недопустимо наличие в непосредственной близости от прибора источников вибраций, тепла и влажности. Место установки необходимо защитить от попадания атмосферных осадков и прямых солнечных лучей.

Техника подключения моделей PWM

Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.

Соответствие подключений контроллера
Техника соединения контроллеров PWM с периферийными устройствами особыми сложностями не выделяется. Каждая плата оснащена маркированными клеммами. Здесь попросту требуется соблюдать последовательность действий

Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:

  1. Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
  2. Непосредственно в точке контакта положительного провода включить защитный предохранитель.
  3. На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
  4. Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).

Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В этом материале более подробно описана схема сборки солнечных батарей с аккумулятором.

Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.

Режим Разряд

Если при старте программы напряжение на АБ ниже Umax, включается дозаряд АБ с током Is. После достижения напряжения Umax начинается разряд АБ с током Ii. Ведется подсчет емкости АБ.

Когда напряжение на АБ достигнет Umin разряд прекращается, на индикатор выводится индикация разряд выкл и емкость на АБ-???.?AH Vm 11.0 – минимальное напряжение на АБ.

Если истекло время дозаряда или разряда (для дозаряда и заряда устанавливается время H) – остановка программы, индикация ERROR.

Если ток заряда или разряда превысил установленные на 0.2 – остановка программы, индикация ERROR в верхней строке. В нижней строке ток, при котором произошло отключение.

Источники

  • https://sovet-ingenera.com/eco-energy/sun/kontroller-zaryada-solnechnoj-batarei.html
  • https://www.rlocman.ru/shem/schematics.html?di=582543
  • https://KotelSibir.ru/kotel/samodelnyj-kontroller-zaryada-solnechnoj-batarei.html
  • https://kachestvolife.club/ekologiya/solnechnaya-energiya/principy-i-shema-raboty-kontrollera-zaryada-dlya-solnechnoy-batarei-vinur
  • https://batareykaa.ru/kontroller-zaryada-solnechnoj-batarei/
  • https://BurForum.ru/teoriya-i-opyt/kontroller-solnechnoj-batarei-shema.html

[свернуть]
Adblock
detector